UC Merced Submission to the ActivityNet Challenge 2016

نویسندگان

  • Yi Zhu
  • Shawn D. Newsam
  • Zaikun Xu
چکیده

This notebook paper describes our system for the untrimmed classification task in the ActivityNet challenge 2016. We investigate multiple state-of-the-art approaches for action recognition in long, untrimmed videos. We exploit hand-crafted motion boundary histogram features as well feature activations from deep networks such as VGG16, GoogLeNet, and C3D. These features are separately fed to linear, one-versus-rest support vector machine classifiers to produce confidence scores for each action class. These predictions are then fused along with the softmax scores of the recent ultra-deep ResNet-101 using weighted averaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016

This paper presents the method that underlies our submission to the untrimmed video classification task of ActivityNet Challenge 2016. We follow the basic pipeline of very deep two-stream CNN [16] and further raise the performance via a number of other techniques. Specifically, we use the latest deep model architecture, e.g. ResNet and Inception V3 and introduce a new aggregation scheme (top-k ...

متن کامل

Temporal Convolution Based Action Proposal: Submission to ActivityNet 2017

In this notebook paper, we describe our approach in the submission to the temporal action proposal (task 3) and temporal action localization (task 4) of ActivityNet Challenge hosted at CVPR 2017. Since the accuracy in action classification task is already very high (nearly 90% in ActivityNet dataset), we believe that the main bottleneck for temporal action localization is the quality of action ...

متن کامل

Untrimmed Video Classification for Activity Detection: submission to ActivityNet Challenge

Current state-of-the-art human activity recognition is focused on the classification of temporally trimmed videos in which only one action occurs per frame. We propose a simple, yet effective, method for the temporal detection of activities in temporally untrimmed videos with the help of untrimmed classification. Firstly, our model predicts the top k labels for each untrimmed video by analysing...

متن کامل

Sensor Placement Strategies for SWE Estimation in the American River Basin

Stephen C. Welch, Department of Civil and Environmental Engineering, UC Berkeley Branko Kerkez, Department of Civil and Environmental Engineering, UC Berkeley Roger C. Bales, Sierra Nevada Research Institute, UC Merced Steven D. Glaser, Department of Civil and Environmental Engineering, UC Berkeley Karl Rittger, Bren School of Environmental Science & Management, UC Santa Barbara Robert R. Rice,...

متن کامل

Electronic Theses and Dissertations UC Merced

of the Dissertation Critical behavior of interacting Brownian motions and Lévy flights.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.03503  شماره 

صفحات  -

تاریخ انتشار 2017